Goals
determine what metrics have to be calculated for both

* Reynolds number
* Nusselt number

Show values for both of them.

Find how to make them equal

Dynamic similarity is the requirement that if the two objects
are geometrically similar, then they also have similar flow
patterns, i.e., the velocities and velocity gradients, fluid forces
and streamlines all scale with the geometry.

For heat transfer problems, we will also require that the
temperatures, temperature gradients and heat fluxes scale

with the geometry.
& y Ansys introduction to heat transfer

As in fluid dynamics, formal methods can be used to determine the relevant dimensionless groups for
convection heat transfer.

- The Nusselt number is a non-dimensional representation of heat transfer.

- The Prandtl number represents the relative sizes of the thermal and velocity gradients.

- The Reynolds Number is a non-dimensional representation of the fluid dynamics (ratio of inertial to viscous
forces).

* Could a relationship between the Nusselt number and Reynolds and Prandtl numbers be tound? That
I5;

Nu = F(Re, Pr)

* |t turns out, the results for a given fluid (i.e., fixed Pr) fall close to a stralght line on a]Dg lag scale,
and the expression for a global Nusselt number can be represented by an « ition:

Nu; = CRe™Pr™

+ Specific values of C , m and n often are independent of the fluid, but they depend on the geometry of
the surface and flow type.

For the case of forced convection, two geometrically similar systems are dynamically similar if their
Nusselt, Reynolds and Prandtl Numbers are the same.
- Therefore, if an experiment is run with a model geometry at given Reynolds and Prandtl numbers to

determine a Nusselt number, then the Nusselt number results can be applied to a scaled-up version of the
model provided the Reynolds and Prandtl numbers are the same.

- The Rey N - Re =
ITi
Cou v
k «

dynViscosity = py.CoolProp.CoolProp.PropsSI('V', 'T', 296.15, 'P|not_imposed',
101325, 'air')

dynViscosity = 1.8351e-05

densityAir = py.CoolProp.CoolProp.PropsSI('D', 'T', 296.15, 'P|not_imposed’,
101325, 'air')

densityAir = 1.1923

thermCond = py.CoolProp.CoolProp.PropsSI('L', 'T', 296.15, 'P|not_imposed',
101325, 'air')

thermCond = 0.0261

ConstPNum = py.CoolProp.CoolProp.PropsSI('C', 'T', 296.15, 'P|not_imposed',
101325, 'air')

ConstPNum = 1.0062e+03

thermMassAir = py.CoolProp.CoolProp.PropsSI('C', 'T', 296.15, 'P|not_imposed',
101325, 'air')

thermMassAir = 1.0062e+03

KinViscosity = dynViscosity/densityAir;

dynViscosity = py.CoolProp.CoolProp.PropsSI('V', 'T', 299.15, 'P|not_imposed',
101325, 'air')

dynViscosity = 1.8496e-05

densityAir = py.CoolProp.CoolProp.PropsSI('D', 'T', 299.15, 'P|not_imposed’,
101325, 'air')

densityAir = 1.1803

thermCond = py.CoolProp.CoolProp.PropsSI('L', 'T', 299.15, 'P|not_imposed',
101325, 'air')

thermCond = 0.0263

ConstPNum = py.CoolProp.CoolProp.PropsSI('C', 'T', 299.15, 'P|not_imposed',
101325, 'air')

ConstPNum = 1.0063e+03

thermMassAir = py.CoolProp.CoolProp.PropsSI('C’,

101325, 'air')
thermMassAir = 1.0063e+03

KinViscosity = dynViscosity/densityAir;

speedl = 1;

lengthl = 1;
length2 = 1.05;
speed2 = 1/1length2;

Rel = densityAir*speedl*lengthl
Rel = 1.1803
Re2 = densityAir*speed2*length2
Re2 = 1.1803
Prl = ConstPNum * dynViscosity*thermCond
Prl = 4.8994e-04
V | Dynamic viscosity [Pa-s
L | Thermal conductivity [kW/m/K]
D | Density [kg/m3]
C | Specific heat at constant pressure [kJ/kg/K]

PRANDTL, Prandtl O | False | Prandtl number

'T', 299.15,

'"P|not_imposed',

